What are pancreatic islets?
Pancreatic Islet Transplantation
The pancreas is located in the abdomen behind the stomach. Islets within the pancreas contain beta cells, which produce insulin.
Insulin is a hormone that helps the body use glucose for energy. Diabetes develops when the body doesn’t make enough insulin, cannot use insulin properly, or both, causing glucose to build up in the blood. In type 1 diabetes-an autoimmune disease-the beta cells of the pancreas no longer make insulin because the body’s immune system has attacked and destroyed them. A person who has type 1diabetes must take insulin daily to live. Type 2 diabetes usually begins with a condition called insulin resistance, in which the body has difficulty using insulin effectively. Over time, insulin production declines as well, so many people with type 2 diabetes eventually need to take insulin.
What is pancreatic islet transplantation?
In an experimental procedure called islet transplantation, islets are taken from the pancreas of a deceased organ donor. The islets are purified, processed, and transferred into another person. Once implanted, the beta cells in these islets begin to make and release insulin. Researchers hope that islet transplantation will help people with type 1diabetes live without daily injections of insulin.
RESEARCH DEVELOPMENTS
Scientists have made many advances in islet transplantation in recent years. Since reporting their findings in the June 2000 issue of the New England Journal of Medicine, researchers at the University of Alberta in Edmonton, Canada, have continued to use and refine a procedure called the Edmonton protocol to transplant pancreatic islets into selected patients with type 1 diabetes that is difficult to control. In 2005, the researchers published 5-year follow-up results for 65 patients who received transplants at their center and reported that about 10 percent of the patients remained free of the need for insulin injections at 5-year follow-up. Most recipients returned to using insulin because the transplanted islets lost their ability to function over time. The researchers noted, however, that many transplant recipients were able to reduce their need for insulin, achieve better glucose stability, and reduce problems with hypoglycemia, also called low blood sugar.
In its 2006 annual report, the Collaborative Islet Transplant Registry, which is funded by the National Institute of Diabetes and Digestive and Kidney Diseases, presented data from 23 islet transplant programs on 225 patients who received islet transplants between 1999 and 2005. According to the report, nearly two-thirds of recipients achieved “insulin independence”-defined as being able to stop insulin injections for at least 14 days-during the year following transplantation. However, other data from the report showed that insulin independence is difficult to maintain over time. Six months after their last infusion of islets, more than half of recipients were free of the need for insulin injections, but at 2-year follow-up, the proportion dropped to about one-third of recipients. The report described other benefits of islet transplantation, including reduced need for insulin among recipients who still needed insulin, improved blood glucose control, and greatly reduced risk of episodes of severe hypoglycemia.
In a 2006 report of the Immune Tolerance Network’s international islet transplantation study, researchers emphasized the value of transplantation in reversing a condition known as hypoglycemia unawareness. People with hypoglycemia unawareness are vulnerable to dangerous episodes of severe hypoglycemia because they are not able to recognize that their blood glucose levels are too low. The study showed that even partial islet function after transplant can eliminate hypoglycemia unawareness.
Transplant Procedure
Researchers use specialized enzymes to remove islets from the pancreas of a deceased donor. Because the islets are fragile, transplantation occurs soon after they are removed. Typically a patient receives at least 10,000 islet “equivalents” per kilogram of body weight, extracted from two donor pancreases. Patients often require two transplants to achieve insulin independence. Some transplants have used fewer islet equivalents taken from a single donated pancreas.
Transplants are often performed by a radiologist, who uses x rays and ultrasound to guide placement of a catheter-a small plastic tube-through the upper abdomen and into the portal vein of the liver. The islets are then infused slowly through the catheter into the liver. The patient receives a local anesthetic and a sedative. In some cases, a surgeon may perform the transplant through a small incision, using general anesthesia.
Islets extracted from a donor pancreas are infused into the liver. Once implanted, the beta cells in the islets begin to make and release insulin.
Islets begin to release insulin soon after transplantation. However, full islet function and new blood vessel growth associated with the islets take time. The doctor will order many tests to check blood glucose levels after the transplant, and insulin is usually given until the islets are fully functional.
islet cell Transplant
What are the benefits and risks of islet transplantation?
The goal of islet transplantation is to infuse enough islets to control the blood glucose level without insulin injections. Other benefits may include improved glucose control and prevention of potentially dangerous episodes of hypoglycemia. Because good control of blood glucose can slow or prevent the progression of complications associated with diabetes, such as heart disease, kidney disease, and nerve or eye damage, a successful transplant may reduce the risk of these complications.
Risks of islet transplantation include the risks associated with the transplant procedure-particularly bleeding and blood clots-and side effects from the immunosuppressive drugs that transplant recipients must take to stop the immune system from rejecting the transplanted islets.
IMMUNOSUPPRESSIVE DRUGS
Rejection is the biggest problem with any transplant. The immune system is programmed to destroy bacteria, viruses, and tissue it recognizes as “foreign,” including transplanted islets. In addition, the autoimmune response that destroyed transplant recipients’ own islets in the first place can recur and attack the transplanted islets. Immunosuppressive drugs are needed to keep the transplanted islets functioning.
The Edmonton protocol introduced the use of a new combination of immunosuppressive drugs, also called anti-rejection drugs, including daclizumab (Zenapax), sirolimus (Rapamune), and tacrolimus (Prograf). Daclizumab is given intravenously right after the transplant and then discontinued. Sirolimus and tacrolimus, the two main drugs that keep the immune system from destroying the transplanted islets, must be taken for life or for as long as the islets continue to function. These drugs have significant side effects and their long-term effects are still not fully known. Immediate side effects of immunosuppressive drugs may include mouth sores and gastrointestinal problems, such as stomach upset and diarrhea. Patients may also have increased blood cholesterol levels, hypertension, anemia, fatigue, decreased white blood cell counts, decreased kidney function, and increased susceptibility to bacterial and viral infections. Taking immunosuppressive drugs also increases the risk of tumors and cancer.
Researchers continue to develop and study modifications to the Edmonton protocol drug regimen, including the use of new drugs and new combinations of drugs designed to help reduce the destruction of transplanted islets and promote their successful implantation. These therapies may help transplant recipients achieve better function and durability of transplanted islets with fewer side effects. The ultimate goal is to achieve immune tolerance of the transplanted islets, where the patient’s immune system no longer recognizes the islets as foreign. If achieved, immune tolerance would allow patients to maintain transplanted islets without long-term immunosuppression.
Researchers are also trying to find new approaches that will allow successful transplantation without the use of immunosuppressive drugs. For example, one study is testing the transplantation of islets that are encapsulated with a special coating designed to prevent rejection.
SHORTAGE OF ISLETS
A major obstacle to the widespread use of islet transplantation is the shortage of islets. Although organs from about 7,000 deceased donors become available each year in the United States, fewer than half of the donated pancreases are suitable for whole organ pancreas transplantation or for harvesting of islets-enough for only a small percentage of those with type 1 diabetes. However, researchers are pursuing various approaches to solve this problem, such as transplanting islets from a single donated pancreas, from a portion of the pancreas of a living donor, or from pigs. Researchers have transplanted pig islets into other animals, including monkeys, by encapsulating the islets or by using drugs to prevent rejection. Another approach is creating islets from other types of cells, such as stem cells. New technologies could then be employed to grow islets in the laboratory.
The U.S. Government does not endorse or favor any specific commercial product or company. Trade, proprietary, or company names appearing in this document are used only because they are considered necessary in the context of the information provided. If a product is not mentioned, the omission does not mean or imply that the product is unsatisfactory.
For More Information
For information about clinical trials in islet transplantation, see www.ClinicalTrials.gov or www.citregistry.org .
You may also find additional information about this topic by visiting MedlinePlus at www.medlineplus.gov.
This publication may contain information about medications. When prepared, this publication included the most current information available. For updates or for questions about any medications, contact the U.S. Food and Drug Administration toll-free at 1-888-INFO-FDA (1-888-463-6332) or visit www.fda.gov. Consult your doctor for more information.
National Diabetes Information Clearinghouse
1 Information Way
Bethesda, MD 20892–3560
Phone: 1–800–860–8747
TTY: 1–866–569–1162
Fax: 703–738–4929
Email: ndic@info.niddk.nih.gov
Internet: www.diabetes.niddk.nih.gov
The National Diabetes Information Clearinghouse (NDIC) is a service of the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). The NIDDK is part of the National Institutes of Health of the U.S. Department of Health and Human Services. Established in 1978, the Clearinghouse provides information about diabetes to people with diabetes and to their families, health care professionals, and the public. The NDIC answers inquiries, develops and distributes publications, and works closely with professional and patient organizations and Government agencies to coordinate resources about diabetes.
This publication is not copyrighted. The Clearinghouse encourages users of this publication to duplicate and distribute as many copies as desired.
Be Informed. Get In Control. Prevent.
Better late than never
Coming Soon!
Available Aug 16, 2019
Diabetes Cure
Be Informed. Get In Control.
Our Blog
Follow Along
Screening For Diabetes
Blood Test Screening for Diabetes Anyone over the age of 45 should be screened for glucose abnormalities every three years. In high-risk individuals, testing should be done annually, starting at a younger age. High risk being overweight, family history of Type 2...
Disaster Planning
you never know When Disaster Occurs When There's an Emergency or Natural Disaster Everyone with diabetes should be prepared for emergencies and natural disasters, such as power outages or hurricanes. Always have your disaster kit ready. Include everything you need to...
Neuropathy
Important to reduce all risk factors Diabetic neuropathy Diabetic neuropathy, also called peripheral neuropathy, can affect motor or sensory nerves. Motor nerves supply muscles. Damage to these nerves will cause muscle weakness. Diabetic neuropathy tends to be...
Contact Us
The newsletter is only sent if there are any new blogs or articles added.